
Dataset Regeneration for Sequential Recommendation

MethodologyMotivation
l Overview

l (A) Model-agnostic dataset regeneration (DR4SR)
l Pre-training dataset construction with rule-based pattern mining

Ø Extracting patterns that appear more than a specified 
number of times within a given sliding window size

l Diversity-promoted regenerator
Ø Architecture: Encoder-Decoder-based Transformer
Ø Input: original user sequences 𝒳; Output: sequential behavior patterns 𝒳′
Ø Challenge: It is hard for vanilla transformer to model the one-to-many relationship between the source 

sequences and target patterns
Ø Solution: We introduce a diversity promoter which transforms the memory generated by the encoder 

into a target-aware memory
Ø Formulation: 
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Ø Learning: 
Ø Reconstruct each target pattern with the source sequence as input
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l (B) Dataset regeneration with hybrid inference strategy
Ø Basic process: Re-feeding the original sequences into the regenerator and conduct inference
Ø Restrictive mode (Exploitation): Decoding is limited to selecting items from the input sequence
Ø Generative mode (Exploration): No restrictions, exploring patterns that not exist in the original data
Ø Hybrid mode (Balanced): A probability 𝛾 to adopt generative mode and 1 − 𝛾 for restrictive mode
Ø Note: No target patterns input for the diversity promoter. We just respectively input each projected 

memory into the decoder to generate K patterns
l (C) Model-aware dataset regeneration (DR4SR+)

l Dataset personalizer (MLP)
Ø Input: sequential behavior patterns 𝑋′; Output: sample weight for each training instances 𝑊
Ø Learning: 
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Ø Challenge: Model collapse, 𝑤+,% ≈ 0 for all training instances
Ø Solution: We formalize the problem as a bi-level optimization problem
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Ø Efficiently optimized with implicit gradient
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Model-centric paradigm: one dataset for all models
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Learning Datasets rather than Models

Problem Statement
l Sequential Recommendation

l Goal: Predicting the item at the next time step for each user

l Training Data Development
l Goal: Learning an informative and generalizable dataset, facilitating the learning process of a

target recommender system model

l Dataset Regeneraiton
l Goal: Learning an one-to-many dataset regenerator, which transforms each original user

sequence into multiple user behavior patterns

l Model-aware Dataset Regeneration
l Goal: Learning a dataset personalizer, which scores each regenerated pattern given a 

specific target model
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l We decompose sequential user modeling into two stages
l Extracting the item transition patterns: 𝒳 → 𝒳′
l Learning user preferences with transition patterns: 𝒳! → ℋ

l Traditional model-centric paradigm directly learns the mapping 𝒳 → 𝓗
l It is hard to learn a satisfying 𝒇 since it contains two mappings 𝓧 → 𝓧′ and 𝓧! → 𝓗

l Our paradigm develops a new dataset that explicitly represents the transition patterns 𝒳′
l It is easier to learn a mapping 𝒳! → ℋ, as long as we can learn an effective 𝒳′

Key Idea
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Key Results
l Overall Performance: Integrating DR4SR and DR4SR+ with various backbones

l Ablation

l Visualization of learned sample weights 𝑾 for different models l Comparison of using (Original / Regenerated)
data to construct graphs or augmentation data

l Time and space complexity

l Hyper-parameter sensitivity analysis

(1) Diversity factor K (2) Generative decoding ratio 𝜸

𝒳′ ℋ


