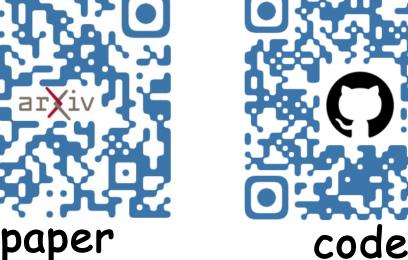
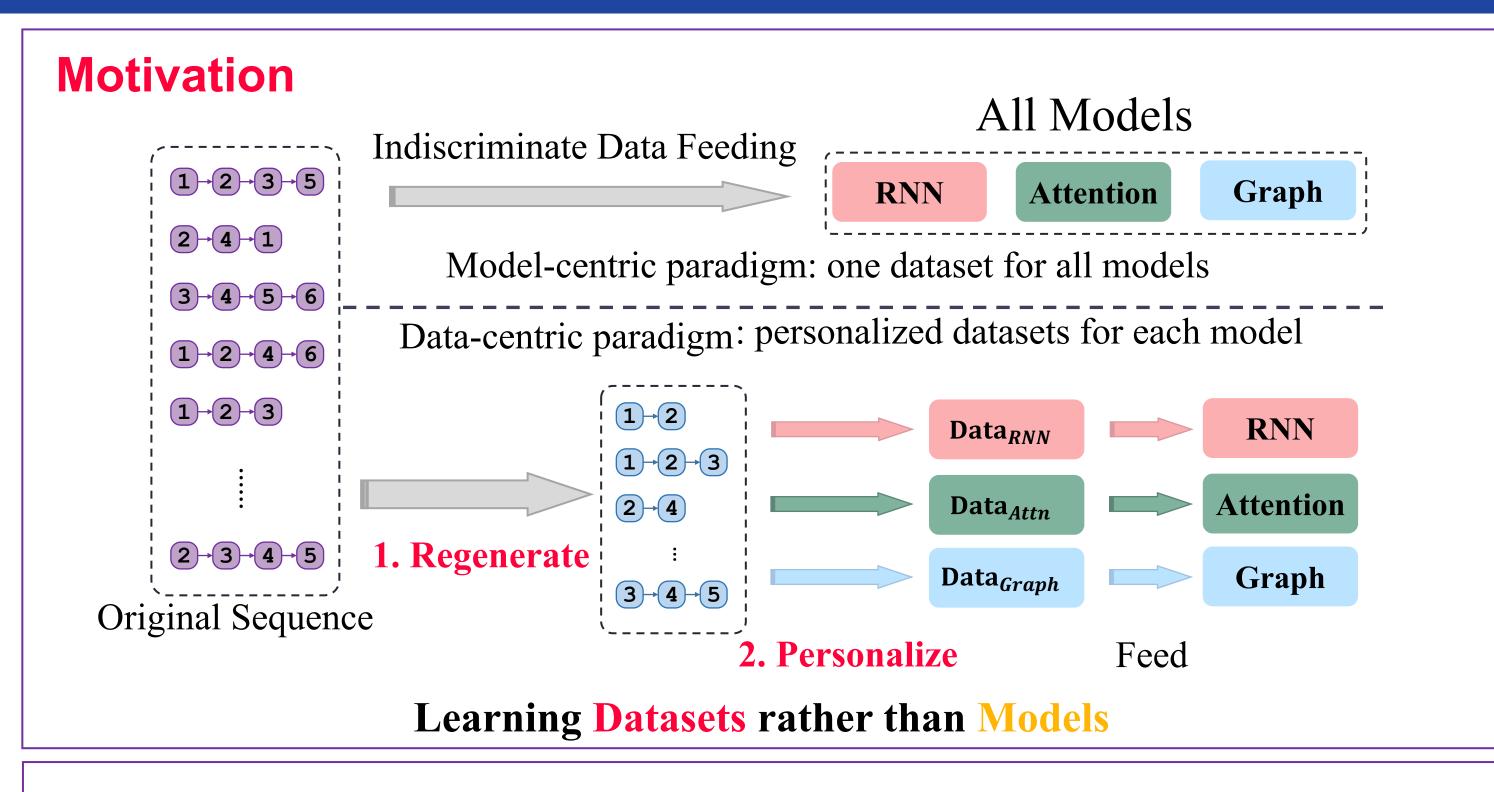
Dataset Regeneration for Sequential Recommendation

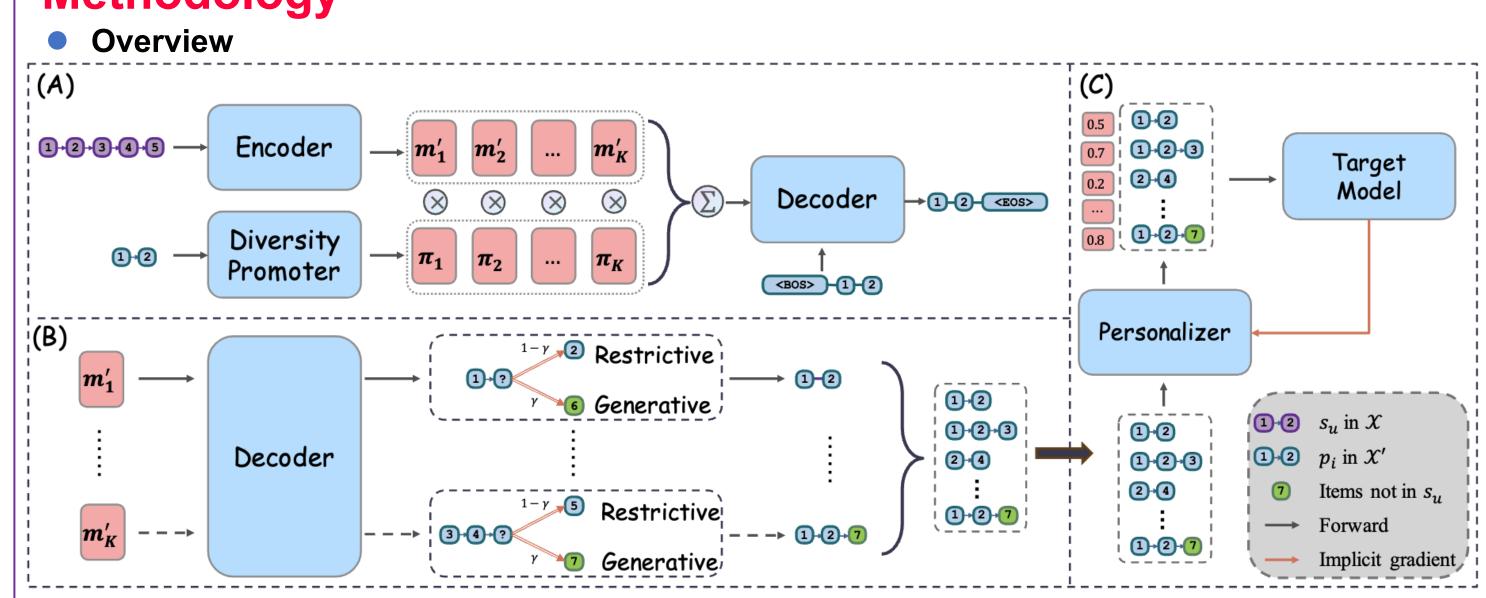
Mingjia Yin¹, Hao Wang^{1*}, Wei Guo², Yong Liu²,

Suojuan Zhang¹, Sirui Zhao¹, Defu Lian¹, Enhong Chen¹

1. University of Science and Technology of China & State Key Laboratory of Cognitive Intelligence 2.Huawei Singapore Research Center







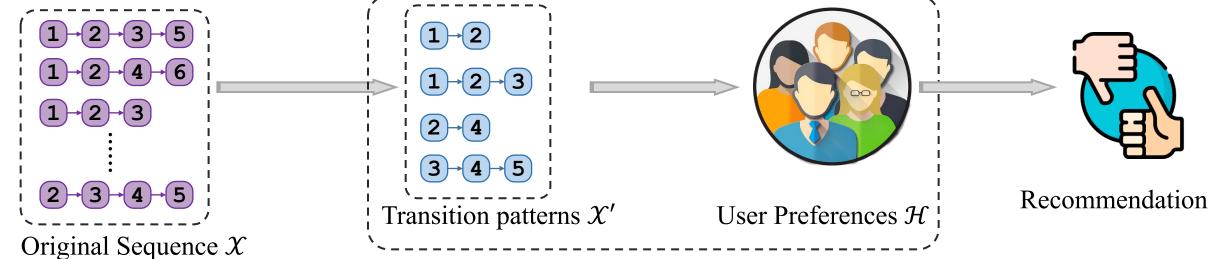
- (A) Model-agnostic dataset regeneration (DR4SR)
- Pre-training dataset construction with rule-based pattern mining

Key Idea

- We decompose sequential user modeling into two stages
 - Extracting the item transition patterns: $\mathcal{X} \to \mathcal{X}'$

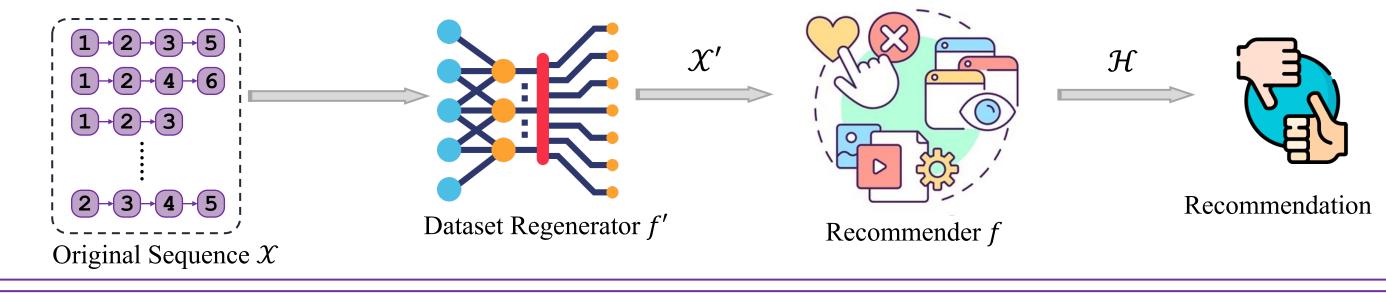
HUAWEI

Learning user preferences with transition patterns: $\mathcal{X}' \to \mathcal{H}$

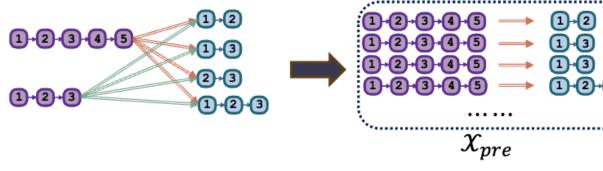


- Traditional model-centric paradigm directly learns the mapping $\mathcal{X} \to \mathcal{H}$
- It is hard to learn a satisfying f since it contains two mappings $X \to X'$ and $X' \to H$

- Original Sequence \mathcal{X} Recommender *f* Our paradigm develops a new dataset that explicitly represents the transition patterns \mathcal{X}'
- It is easier to learn a mapping $\mathcal{X}' \to \mathcal{H}$, as long as we can learn an effective \mathcal{X}'



- Extracting patterns that appear more than a specified number of times within a given sliding window size
- **Diversity-promoted regenerator**



- Architecture: Encoder-Decoder-based Transformer
- **Input**: original user sequences \mathcal{X} ; **Output**: sequential behavior patterns \mathcal{X}'
- 1-3 1-2-3
- **Challenge**: It is hard for vanilla transformer to model the one-to-many relationship between the source sequences and target patterns
- **Solution**: We introduce a diversity promoter which transforms the memory generated by the encoder into a target-aware memory
- Formulation:
 - Projecting the encoded memory into k different latent spaces:
 - Generating a probability vector with target information:
 - Generating a target-aware memory:
- Learning:
 - Reconstruct each target pattern with the source sequence as input

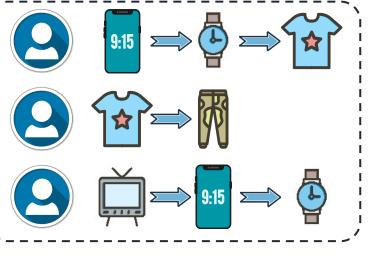
$$L_{recon} = -\sum_{(s_u, p_i)}^{|X_{pre}|} \sum_{t=1}^{T} log\left(P(p_{it}|h_u^{(l)}, \widehat{p}_{< t})\right)$$

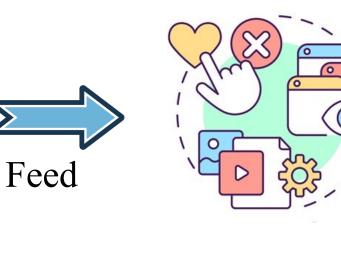
- (B) Dataset regeneration with hybrid inference strategy
 - **Basic process**: Re-feeding the original sequences into the regenerator and conduct inference
 - **Restrictive mode (Exploitation)**: Decoding is limited to selecting items from the input sequence
 - Generative mode (Exploration): No restrictions, exploring patterns that not exist in the original data
 - **Hybrid mode (Balanced)**: A probability γ to adopt generative mode and 1γ for restrictive mode
 - **Note**: No target patterns input for the diversity promoter. We just respectively input each projected memory into the decoder to generate K patterns
- (C) Model-aware dataset regeneration (DR4SR+)
- Dataset personalizer (MLP)
 - **Input**: sequential behavior patterns X'; **Output**: sample weight for each training instances W
 - Learning:

 $m'_k = MLP_k(m)$ $\pi = Softmax(MLP(h_{pattern}^{(l)}))$ $m_{final} = \sum_{k=1}^{K} \pi_k m'_k$

Problem Statement

- Sequential Recommendation
- Goal: Predicting the item at the next time step for each user



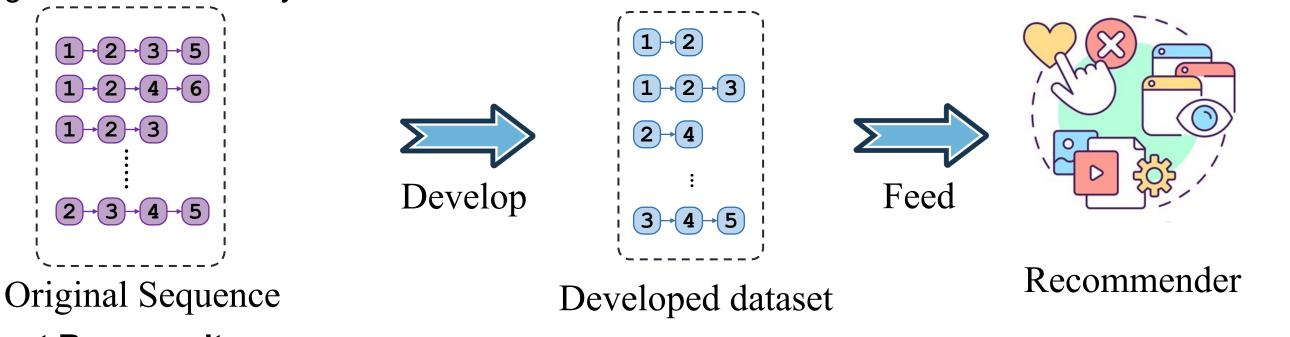


User sequences

Recommended next-item

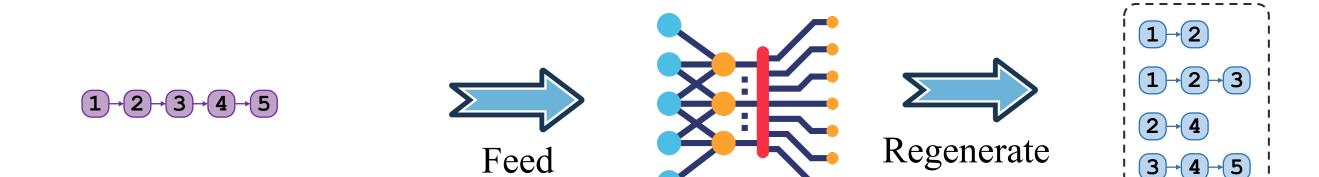
Recommend

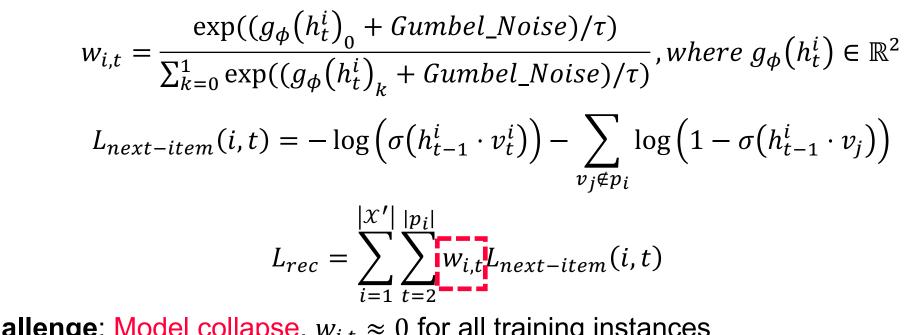
- Training Data Development
- Goal: Learning an informative and generalizable dataset, facilitating the learning process of a target recommender system model



Dataset Regeneration

• Goal: Learning an one-to-many dataset regenerator, which transforms each original user sequence into multiple user behavior patterns





- **Challenge**: Model collapse, $w_{i,t} \approx 0$ for all training instances
- **Solution**: We formalize the problem as a bi-level optimization problem

 $\phi^* = \arg\min_{\phi} L_{rec-ori}(\theta^*(\phi)),$ s.t. $\theta^*(\phi) = \arg\min_{\theta} L_{rec}(\theta, \phi)$

Efficiently optimized with implicit gradient

$$\nabla_{\phi} \mathcal{L}_{\text{rec-ori}} = -\nabla_{\theta} \mathcal{L}_{\text{rec-ori}} \cdot \sum_{n=0}^{K} \left(I - \nabla_{\theta}^{2} \mathcal{L}_{\text{rec}} \right)^{n} \cdot \nabla_{\phi} \nabla_{\theta} \mathcal{L}_{\text{rec}}$$

Key Results

Overall Performance: Integrating DR4SR and DR4SR+ with various backbones

Dataset	Beauty				Sports				Toys				Yelp			
Metric	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20	R@10	R@20	N@10	N@20
∞-AE	0.0478	0.0661	0.0262	0.0308	0.0256	0.0373	0.0144	0.0173	0.0450	0.0593	0.0268	0.0304	0.0252	0.0424	0.0121	0.0162
MELT	0.0577	0.0879	0.0303	0.0379	0.0311	0.0488	0.0163	0.0208	0.0709	0.0987	0.0401	0.0473	0.0293	0.0497	0.0143	0.0195
GRU4Rec	0.0204	0.0382	0.0107	0.0150	0.0160	0.0279	0.0085	0.0115	0.0212	0.0357	0.0099	0.0136	0.0215	0.0364	0.0105	0.0143
DR4SR	0.0252**	0.0448^{**}	0.0128^{**}	0.0177^{**}	0.0208**	0.0341**	0.0102^{**}	0.0135**	0.0252**	0.0418**	0.0124^{**}	0.0165^{**}	0.0235**	0.0403**	0.0114^{**}	0.0156**
Improv	23.5%	17.3%	19.6%	18.0%	30.0%	22.2%	20.0%	17.4%	18.9%	22.4%	25.3%	21.3%	9.30%	10.7%	8.57%	9.09%
DR4SR+	0.0292**	0.0473**	0.0149**	0.0194**	0.0223**	0.0360**	0.0116**	0.0151**	0.0274**	0.0456**	0.0134**	0.0179**	0.0243**	0.0415**	0.0120**	0.0164**
Improv	43.1%	23.8%	39.3%	29.3%	39.4%	29.0%	36.5%	31.3%	29.2%	27.7%	35.4%	31.6%	13.0%	14.0%	14.3%	14.7%
SASRec	0.0553	0.0847	0.0291	0.0368	0.0297	0.0449	0.0156	0.0194	0.0682	0.0951	0.0381	0.0448	0.0289	0.0488	0.0143	0.0193
DR4SR	<u>0.0595**</u>	0.0906**	0.0317**	0.0395**	0.0330**	0.0512^{**}	0.0174^{**}	0.0220^{**}	0.0762^{**}	0.1049**	0.0432**	0.0504^{**}	0.0304^{*}	0.0512^{*}	0.0151^{*}	0.0202^{*}
Improv	7.59%	6.97%	8.93%	7.34%	11.1%	14.0%	11.5%	13.4%	11.7%	10.3%	13.4%	12.5%	5.19%	4.92%	5.59%	4.66%
DR4SR+	0.0619**	0.0919**	0.0337**	0.0412**	0.0349**	0.0525**	0.0191**	0.0235**	0.0773**	0.1068**	0.0453**	0.0527**	0.0317**	0.0523**	0.0159**	0.0211**
Improv	11.9%	8.50%	15.8%	12.0%	17.5%	16.9%	22.4%	21.1%	13.3%	12.3%	18.9%	17.6%	9.69%	7.17%	11.2%	9.33%
FMLP	0.0602	0.0934	0.0311	0.0394	0.0323	0.0524	0.0166	0.0217	0.0676	0.0982	0.0377	0.0447	0.0297	0.0495	0.0143	0.0197
DR4SR	0.0635**	0.0993**	0.0332^{**}	0.0421	0.0345	0.0559	0.0177^{**}	0.0230**	0.0717^{**}	0.1061^{**}	0.0400^{**}	0.0486^{**}	0.0316**	0.0524^{**}	0.0158^{**}	0.0210^{**}
Improv	5.48%	6.32%	6.75%	6.85%	6.81%	6.68	6.63%	5.99%	6.07%	8.04%	6.10%	8.72%	6.40%	5.86%	10.5%	6.60%
DR4SR+	0.0687**	0.1056**	0.0357**	0.0449**	0.0384**	0.0597**	0.0198**	0.0253**	0.0788**	0.1136**	0.0437**	0.0524**	0.0353**	0.0582**	0.0171**	0.0231**
Improv	14.1%	13.1%	14.8%	14.0%	18.9%	13.9%	19.3%	16.6%	16.6%	15.7%	15.9%	17.2%	18.9%	17.6%	19.6%	17.3%
GNN	0.0570	0.0859	0.0311	0.0384	0.0311	0.0476	0.0167	0.0211	0.0697	0.0958	0.0403	0.0469	0.0242	0.0430	0.0118	0.0166
DR4SR	0.0611^{**}	0.0926**	0.0324^{*}	0.0406^{*}	0.0336**	0.0525^{**}	0.0182^{**}	0.0230**	0.0736**	0.1031**	0.0424^{**}	0.0498^{**}	0.0268**	0.0451^{*}	0.0129**	0.0175^{*}
Improv	7.19%	7.80%	4.18%	5.73%	8.04%	10.3%	8.98%	9.00%	5.60%	7.62%	5.21%	6.18%	10.7%	4.88%	9.32%	5.42%

Each User Sequence

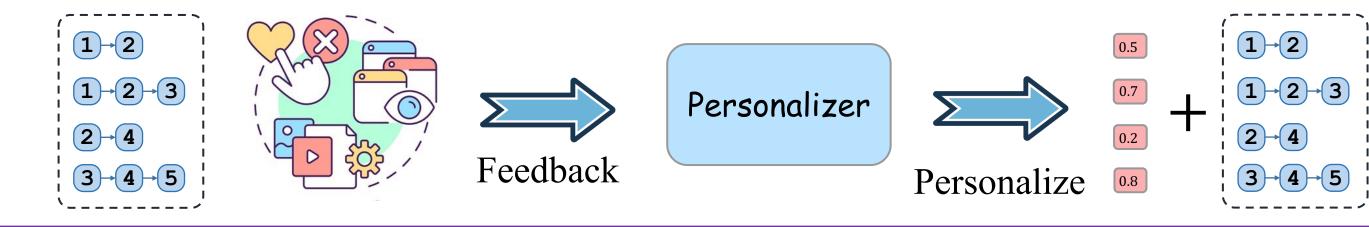
Dataset Regenerator

`____/

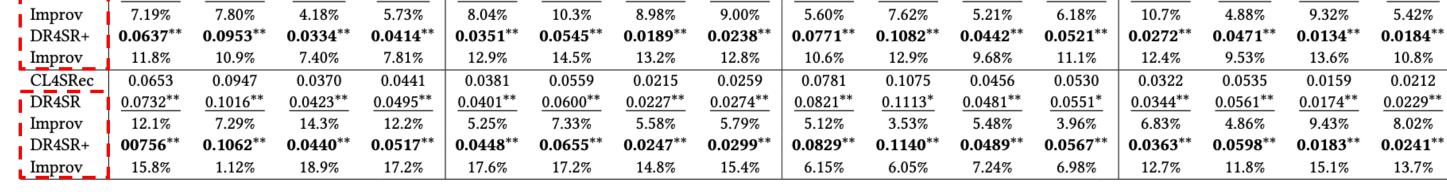
User Behavior Pattern

Model-aware Dataset Regeneration

• Goal: Learning a dataset personalizer, which scores each regenerated pattern given a specific target model



Visualization of learned sample weights *W* for different models



0.03925

0.03750 ບັ

Ablation

• Hyper-parameter sensitivity analysis

Dataset	Beauty	Sport	Toys	Yelp
SASRec	0.0368	0.0194	0.0448	0.0193
DR4SR+	0.0412	0.0235	0.0527	0.0211
(A) -diversity	0.0365	0.0211	0.0470	0.0196
(B) pattern	0.0181	0.0184	0.0407	0.0141
(C) end-to-end	0.0026	0.0029	0.0067	0.0035

Time and space complexity

Dataset	Metric	Beauty	Sport	Toys	Yelp
BASE	Runtime(s/epoch)	7.618	15.345	13.370	17.738
DASE	GPU memory (MB)	1930	2194	1968	2254
w/ hi loval antimization	Runtime(s/epoch)	9.476	18.952	14.213	22.41
w/ bi-level optimization	GPU memory (MB)	2342	2626	2382	2688

data to construct graphs or augmentation data

